اسکنر چند کاره پرتابل بدن با توان پایین

Submit to FacebookSubmit to Google PlusSubmit to TwitterSubmit to LinkedIn

اسکنر قابل حمل با مصرف انرزی پایین بدون استفاده از منابع رادیو اکتیو و توان مغناطیسی پایین با استاده از فرکانس های در دسترس تر می تواند در شرایط اضطراری بیرون از مراکز درمانی میزان مرگها و آسیبها را تا حد زیادی کاهش دهد. این اسکنر می تواند ترکیبی از ترموگرافی و التراسونک و سایر منابع باشد.

مقطع‌نگاری رایانه‌ای یا برش‌نگاری رایانه‌ای یا توموگرافی رایانه‌ای Computed Tomography یا به اصطلاح سی‌تی اِسکَن، روشی نوین است که در علوم تشخیصی در فیزیک پزشکی کاربرد تحقیقاتی و درمانی فراوانی دارد.

 

در این روش، کالبد انسان یا دیگر جانوران به صورت لایه‌به‌لایه برانداز (اسکن) می‌شود و بدین ترتیب بخش‌های درونی بدن نیز برای پزشکان قابل رؤیت می‌گردد.

 

امروزه فناوری سی‌تی‌اسکن در بیمارستان‌ها و مراکز پژوهشی در سرتاسر دنیا (از جمله در ایران) کاربرد وسیع دارند

تصویربرداری سی تی یا سی‌تی اسکن یا توموگرافی کامپیوتری (به فارسی: مقطع‌نگاری رایانه‌ای) استفاده از اشعه ایکس در ارتباط با الگوریتم‌ها و محاسبات کامپیوتری به منظور ایجاد تصویر از بدن می‌باشد. در سی تی، یک تیوب یا لولهٔ تولیدکنندهٔ اشعه ایکس، در مقابل یک آشکارساز (دتکتور) این اشعه قرار داده شده، و با کمک حلقه‌ای که به صورت یک دستگاه و به شکل چرخشی در اطراف بیمار حرکت می‌کند، تصویر کامپیوتریِ مقطعی به صورت برش یا مقطع عرضی تولید می‌نماید. سی تی در سطح آگزیال یا محوری است که تصویر به دست می‌دهد، در حالی که تصویرهای مقطع کرونال (تاجی) و ساژیتال (سهمی) را می‌توان به وسیلهٔ بازسازی‌های کامپیوتری ارائه کرد.

عوامل رادیوکنتراست یا مواد حاجب اغلب در سی تی برای توصیف بهتر آناتومی مورد استفاده واقع می‌شوند. گرچه رادیوگرافی قادر به تولید و ارائهٔ تفکیک‌پذیری فضایی بالاتری است، اما در عوض سی تی می‌تواند اطلاعات بیشتری را در مورد تغییرات دقیق و ظریف مربوط به میرایی پرتو ایکس تشخیص دهد. در ضمن سی تی بیمار را در معرض تابش اشعهٔ یونیزان بیشتری در مقایسه با رادیوگرافی قرار می‌دهد. در سی تی نوع اسپیرال با آشکارسازهای زیاد (مولتی دتکتور) از چند ردیاب یا آشکارساز بهره گیری می‌شود. در این نوع ۸ ، ۱۶، یا ۶۴ ردیاب یا آشکارساز در طول حرکتی پیوسته و مستمر از بیمار، از طریق تابش پرتو تصویر به دست می‌آورند که حاصل تصاویری عالی و با جزئیات بسیار ظریف در زمان بررسی کمتر می‌باشد.

با تجویز سریع کنتراست وریدی در طی سی‌تی اسکن این جزئیات دقیق تصویری را می‌توان بازسازی سه‌بعدی ۳D نمود و بدین ترتیب تصاویری از کاروتید، شریان مغزی و کرونری، یا به صورت سی تی آرتریوگرافی و سی تی آنژیوگرافی حاصل نمود. سی‌تی اسکن است تست انتخابی در تشخیص برخی از شرایط اضطراری و اورژانس مانند خونریزی مغزی، آمبولی ریه (لخته‌ای که موجب انسداد در عروق ریه‌ها شود)، دایسکشن آئورت یا همان پارگی سرخرگ آئورت (پاره شدن دیواره آئورت)، آپاندیسیت، دیورتیکولیت، و سنگ کلیه می‌باشد. با ادامهٔ پیشرفتها و بهبود مداوم در تکنولوژی(فناوری) سی‌تی اسکن، از جمله سریعتر شدن زمان تصویربرداری و بهبود رزولوشن یا وضوح و تفکیک‌پذیری تصاویر، دقت و کارایی این روش به طور چشمگیری افزایش یافته و در نتیجه از سی‌تی اسکن به میزان بیشتری در تشخیص‌های پزشکی استفاده می‌شود.

نخستین دستگاه سی‌تی اسکن (سی‌تی اسکنر) که به لحاظ تجاری قابل بهره‌برداری بود، توسط سر گادفری هانسفیلد در آزمایشگاه مرکزی تحقیقات ایمی (EMI) در بریتانیای کبیر به سال ۱۹۷۲ اختراع شد. حقوق قانونی ایمی (EMI) متعلق به شرکت توزیع آثار موسیقیِ گروه بیتل‌ها (بیتلز) بود که منافع آن به بودجهٔ پژوهشی اختصاص می‌یافت. سر گادفری هانسفیلد و آلن مک لود مک کورمک، به خاطر اختراع مشترکشان یعنی سی‌تی اسکن، برندهٔ جایزهٔ نوبل پزشکیِ سال ۱۹۷۹ شدند. نخستین دستگاه سی تی یا همان سی‌تی اسکنر نیز، به سال ۱۹۷۲ در کلینیک میو در روچستر واقع در مینسوتا نصب گردید.

اساس MRI مبتنی بر حرکت اسپینی هسته‌های اتم هیدورژن موجود در بدن است. این اسپین‌ها از اسپین‌های فردی پروتون‌ها و نوترون‌های درون هسته، ناشی می‌شود. با توجه با اینکه در اتم هیدورژن فقط یک پروتون وجود دارد، خود هسته یک اسپین خالص یا گشتاور زاویه‌ای دارد. این گشتاور زاویه‌ای را هسته‌های MR می‌نامند. با توجه به اینکه هسته هیدروژن دارای حرکت و بار مثبت است. پس طبق قانون القاء فاراده به طور خود به خود یک گشتاور مغناطیسی پیدا می‌کنند؛ و با قرار گرفتن در یک میدان مغناطیسی خارجی مرتب می‌شوند. برخی هسته‌های اتم هیدروژن با میدان هم راستا می‌شوند، و تعداد کمتری از هسته‌ها پاد موازی با میدان مغناطیسی هم راستا می‌شوند. تأثیر میدان مغناطیسی خارجی ایجاد یک نوسان اضافی برای هسته‌های هیدروژن حول خود میدان است که این حرکت را، حرکت تقدیمی می‌نامند. برای آنکه تشدید هسته‌های هیدروژن رخ دهد، یک پالس RF با همان فرکانس حرکت تقدیمی به کار می‌رود. اعمال پالس RF که سبب تشدید هسته‌ها می‌شود، را تحریک می‌نامند. در نتیجه این تشدید هسته‌های هیدروژن هم راستا با میدان مغناطیسی خارجی باقی نمی‌ماند. به زاویه‌ای که بین هسته‌های هیدروژن و میدان مغناطیسی خارجی ایجاد می‌شود، زاویه فلیپ FA می‌گویند. اگر این زاویه ۹۰ درجه باشد بیشترین مقدار انرژی به کویل‌های گیرنده القاء می‌شود. طبق قانون القاء فاراده اگر یک کویل گیرنده در صفحه حرکت این میدان مغناطیسی قرار گیرد، ولتاژ در کویل القاء می‌شود. وقتی میدان مغناطیسی عرض صفحه کویل را قطع کند، سیگنال MR تولید می‌شود. این سیگنال نقاط فضای k یا فوریه را تشکیل می‌دهد، با تبدیل فوریه گرفتن از این فضا تصویر نهایی بدست می‌آید.

 

با ام آر آی می‌توان در جهات فوقانی-تحتانی (اگزیال)، چپ‌راستی (ساژیتال) و پس‌وپیش (کورونال) و حتّی در جهات اُریب و مایل تصویرگیری نمود. یک سیستم ام آر آی از سه میدان مغناطیسی استفاده می‌کند:

 

میدان خارجی ثابت و قوی (B0)
میدان ضعیف گرادیانی متغیر
میدان حاصل از پالس RF الکترومغناطیسی (B۱)

 


در واقع ام آر آی روشی است که از خاصیت مغناطیسی بافت‌ها استفاده کرده و تولید تصویر می‌کند. اصول پایهٔ MRI بر این اساس است که هسته‌های بعضی از عناصر، وقتی در میدان مغناطیسی قوی قرار می‌گیرند، با نیروی مغناطیسی در یک راستا قرار می‌گیرند.

 

قدرت سیگنالی که در MRI بوجود می‌آید به دو عامل دانسیته پروتون‌ها و زمان‌های استراحت T۱ و T۲ بستگی دارد. T۱ مدت زمانی است که ۶۳٪ ممان مغناطیسی طولی یک پروتون پس از برانگیختگی، از راستای عمودبرمیدان به راستای موازات میدان مغناطیسی باز می‌گردد. همچنین T۲ مدت زمانیست که ممان مغناطیسی عرضی یک پروتون پس از برانگیختگی، به ۳۷٪ مقدار اولیه خود تنزل می‌یابد. اکثر فرایندهای پاتولوژیک، موجب افزایش زمان استراحتِ T۱ و T۲ یا همان Relaxation time آنها می‌شوند و لذا در مقایسه با بافت‌های طبیعی اطراف، در تصاویر T1-weighted سیگنال پایین‌تر (تیره رنگ تر) و در تصاویر T2-wighted سیگنال بالاتر (روشن‌تر یا سفیدتر) خواهند داشت.

چگونگی تولید تصویر ام آر آی فرایند بس پیچیده‌ای‌ست. در این روش از خاصیت ویژهٔ اسپین‌های هسته‌های هیدرژنی در میدان مغناطیسی (B0) استفاده می‌شود. پس از انتخاب برش، اسپین‌ها تحت تأثیر میدان مغناطیسی پالس‌های الکترومغناطیسی (B۱) قرار گرفته و سپس از این حالت برانگیختگی به مرور به حالت اولیه خود بازمی گردند. در هر بافتی این مدت زمان متفاوت است. بطور مثال در ۱/۵ تسلا ثابت T1 برای بافت چربی ۲۶۰ میلی ثانیه و برای بافت ماده خاکستری مغز ۹۲۰ میلی ثانیه می‌باشد.

بسته به اینکه چه نوع دنباله پالسیی انتخاب شود، و پارامترهایی مثل TE و TR چگونه تعیین شوند، می‌توان با T1 و T2 کنتراست دلخواه را به تصویر کشید و توانایی ام آر آی در همین خاصیت ویژه قرار دارد. بطور مثال در یکی چربی روشن و در دیگری تاریک می‌شود.

هر برش تصویری توسط فاز و بسامد امواج دریافت شده بترتیب در محورهای y و x کدگذاری می‌گردد. برای انجام کدگذاری احتیاج به میادین مغناطیسی متغیر می‌باشد که این امر به کمک آهن‌رباهای از نوع ابررسانا هر لحظه تولید می‌گردد. اطلاعات دریافتی در فضایی داده‌ای بنام فضای k واریز شده و نهایتاً بکمک تبدیلات فوریه ای به شکل تصویر در آورده می‌شوند.